1. Coulomb's Law

Coulomb's Law states that the electrostatic force between two point charges is:

- Directly proportional to the product of the charges.
- Inversely proportional to the square of the distance between them.

Mathematical Expression:

 $F=krac{q_1q_2}{r^2}$ where:

- F = Electrostatic force (Newton, N)
- q₁, q₂ = Magnitudes of charges (Coulomb, C)
- r = Distance between charges (meters, m)
- k = Coulomb's constant (9 × 10⁹ Nm²/C²) in vacuum

Key Points:

- · Like charges repel, unlike charges attract.
- · Force is along the line joining the charges.
- · Works best for point charges or spherical distributions.
- · Medium affects force: Different materials reduce or enhance electrostatic force.

2. Significance of Medium in Coulomb's Law

The medium between charges affects the force due to its **dielectric constant** (ε_r).

$$F_{medium} = rac{1}{4\piarepsilon_0arepsilon_r} imes rac{q_1q_2}{r^2}$$

where ε_r is the **relative permittivity** (dielectric constant) of the medium.

How Medium Affects Electrostatic Force?

- Vacuum/Air: $\varepsilon_r=1$, maximum force.
- Water: $\varepsilon_r=80$, force is reduced by 80 times.
- Glass: $\varepsilon_r=4-10$, moderate force reduction.
- Metals: $\varepsilon_r o \infty$, force inside conductors is nearly zero (shielding effect).
- Higher dielectric constant → Weaker electrostatic force.
 This principle is used in capacitors and insulation materials.

3. Understanding Dielectric Constant in Simple Terms

Think of dielectric constant as how much a material weakens the force between charges.

- Vacuum/Air (ε_r = 1) → No weakening, full force.
- Water (ε_r = 80) → Weakens force by 80 times.
- Glass ($\varepsilon_r \approx 4-10$) \rightarrow Weakens force moderately.
- Metals $(\varepsilon_r \to \infty)$ \to Force is almost zero (used for shielding, e.g., Faraday cage).

Analogy:

- Talking in an empty room (vacuum) = voice is clear.
- Talking in a crowded room (water) = voice is weak.
- . Talking in a semi-crowded room (glass) = voice is reduced, but not completely.

In summary, dielectric constant = how much a material reduces electrostatic force.

4. Theory of Quantization of Charge

The quantization of charge means that charge always exists in discrete multiples of the elementary charge 'e' (1.6 × 10^-19 C).

Formula:

 $Q = n \times e$ where:

- Q = total charge,
- n = integer (±1, ±2, ±3...)
- e = charge of an electron (1.6 × 10^-19 C)
- No fraction of charge can exist.
 Every charge in the universe is a whole-number multiple of this fundamental charge. • Example: If a body has a charge of -3e, it means it has an excess of 3 electrons.

5. Quiz Time!

MCQs on Coulomb's Law:

- 1. Coulomb's Law is applicable to: a) Only small charged bodies b) Only neutral bodies c) Point charges at rest d) Moving charges
- 2. The force between two charges is inversely proportional to: a) Product of charges b) Distance between them c) Square of the distance between them d) Medium's dielectric constant
- 3. If the distance between two charges is tripled, the force becomes: a) 9 times stronger b) 9 times weaker c) 3 times stronger d) 3 times weaker

Fill in the Blanks:

- 1. The SI unit of charge is ______. 2. Coulomb's Law states that the force between charges is _____ proportional to the square of their separation. 3. In vacuum, the value of Coulomb's constant is _____ Nm²/C². 4. The force between two charges in water is _____ times weaker than in air.
- 5. The charge of a proton is _____ C.

Coulombs Law Basic Concepts , Class 12 Physics Electrostatics, 9899271335 , Rohit Sir, Sri Chaitanya Pathways School

Match the Following:

Column A	Column B
Coulomb's Law	Electrostatic Force
Dielectric Constant	Reduces force between charges
Charge Quantization	Discrete multiples of e
Force between two charges	Inversely proportional to distance squared
Vacuum permittivity	$8.85 imes 10^{-12} ext{C}^2/ ext{Nm}^2$

Example

Two 0.5 kg spheres are placed 25 cm apart. Each sphere has a charge of 100 μ C, one of them positive and the other negative. Calculate the electrostatic force between them, and compare it to their weight.

Coulomb's Law:
$$|F| = \frac{k |q_1| |q_2|}{r^2}$$
 $k = 9 \times 10^9 N m^2 C^{-2}$ $|q_1| = |q_2| = 100 \ \mu C = 100 \times 10^{-6} \ C = 10^{-4} \ C$ $r = 25 \ cm = 0.25 \ m$ $F_{electrostatic} = \frac{9 \times 10^9 \times 10^{-4} \times 10^{-4}}{0.25^2} = 1440 \ N$ $F_{weight} = mg = 0.5 \times 9.8 = 4.9 \ N$

Electrostatic force

- The electrostatic force is a vector, written \vec{F}
- Vectors have a magnitude and a direction. This may be indicated by components $\vec{F} = (F_x, F_y, F_z)$
- The magnitude is sometimes written as $|\vec{F}|$. It can be evaluated as $|\vec{F}| = \sqrt{{F_\chi}^2 + {F_y}^2 + {F_z}^2}$
- The direction can be indicated by a unit vector